Consider the problem of estimating a latent signal from a lossy compressed version of the data when the compressor is agnostic to the relation between the signal and the data. This situation arises in a host of modern applications when data is transmitted or stored prior to determining the downstream inference task. Given a bitrate constraint and a distortion measure between the data and its compressed version, let us consider the joint distribution achieving Shannon's rate-distortion (RD) function. Given an estimator and a loss function associated with the downstream inference task, define the rate-distortion risk as the expected loss under the RD-achieving distribution. We provide general conditions under which the operational risk in estimating from the compressed data is asymptotically equivalent to the RD risk. The main theoretical tools to prove this equivalence are transportation-cost inequalities in conjunction with properties of compression codes achieving Shannon's RD function. Whenever such equivalence holds, a recipe for designing estimators from datasets undergoing lossy compression without specifying the actual compression technique emerges: design the estimator to minimize the RD risk. Our conditions simplified in the special cases of discrete memoryless or multivariate normal data. For these scenarios, we derive explicit expressions for the RD risk of several estimators and compare them to the optimal source coding performance associated with full knowledge of the relation between the latent signal and the data.
翻译:当压缩机对信号和数据之间的关系具有不可知性时,从数据压缩压缩机对数据丢失的压缩版中的潜在信号进行估计的问题。当压缩机对信号和数据之间的关系具有不可知性时,这种情况出现在一系列现代应用中,在确定下游推论任务之前,数据被传输或储存时,会出现这种情况。考虑到比特率限制和数据及其压缩版之间的扭曲度度,让我们考虑在达到香农的速率扭曲功能(RD)时,对数据进行联合分配的问题。鉴于估算机和与下游推论任务相关的损失函数,将比率扭曲风险界定为RD达到分布时的预期损失。我们提供了一般条件,根据这些条件,从压缩数据中估算的操作风险与RD的风险一样,与RD的风险一样。要证明这一等等等值的主要理论工具是运输成本不平等,同时实现香农的RD功能。如果等值不变,那么在设计正在损失压缩的数据集的相关估计器的估算器的配方,而不具体说明实际出现的压缩技术:设计估算仪,以尽量减少RDD的预期损失关系,我们从压缩数据中估算的操作中产生的操作风险与RD的风险与RD的风险一样。我们在正常的模型中,要将一些不固定的模型的模型中,要对各种的模型的模型进行各种的模型的模型的模型的精确度进行各种的精确度的精确度。