Our extensive real measurements over Amazon EC2 show that the virtual instances often have different computing speeds even if they share the same configurations. This motivates us to study heterogeneous Coded Storage Elastic Computing (CSEC) systems where machines, with different computing speeds, join and leave the network arbitrarily over different computing steps. In CSEC systems, a Maximum Distance Separable (MDS) code is used for coded storage such that the file placement does not have to be redefined with each elastic event. Computation assignment algorithms are used to minimize the computation time given computation speeds of different machines. While previous studies of heterogeneous CSEC do not include stragglers-the slow machines during the computation, we develop a new framework in heterogeneous CSEC that introduces straggler tolerance. Based on this framework, we design a novel algorithm using our previously proposed approach for heterogeneous CSEC such that the system can handle any subset of stragglers of a specified size while minimizing the computation time. Furthermore, we establish a trade-off in computation time and straggler tolerance. Another major limitation of existing CSEC designs is the lack of practical evaluations using real applications. In this paper, we evaluate the performance of our designs on Amazon EC2 for applications of the power iteration and linear regression. Evaluation results show that the proposed heterogeneous CSEC algorithms outperform the state-of-the-art designs by more than 30%.
翻译:在亚马逊 EC2 上,我们广泛真实的测量显示,虚拟实例往往有不同的计算速度,即使它们有着相同的配置。这促使我们研究多种编码存储弹性计算(CSEC)系统,在这些系统中,机器以不同的计算速度,加入和离开网络,任意地跨越不同的计算步骤。在CSEC系统中,对编码存储使用最大距离分解码(MDS)代码,这样,文件放置不必与每个弹性事件重新定义。计算分配算法被用来尽量减少计算不同机器计算速度的计算时间。虽然以前对混杂的CSEC的研究不包括计算过程中的分流器-慢速机器,但我们在混合的CSEC中开发了一个新框架,采用不同的计算速度容忍度。基于这个框架,我们设计了一种新的算法,使用我们以前提议的对混杂的CSEC的分类方法,这样系统可以处理任何特定大小的分层的分层,同时尽量减少计算时间。此外,我们在计算时间和分层容度方面建立了一种交换。在计算过程中,不同的CSECSEC设计中的另一个重大限制是缺乏实际的CSEC格式设计结果。我们用实际的C-CSEC的模型评价。在评估中,用实际的30-CSEC的模型设计中,用实际的模型评价结果来显示。