This study concerns the formulation and application of Bayesian optimal experimental design to symbolic discovery, which is the inference from observational data of predictive models taking general functional forms. We apply constrained first-order methods to optimize an appropriate selection criterion, using Hamiltonian Monte Carlo to sample from the prior. A step for computing the predictive distribution, involving convolution, is computed via either numerical integration, or via fast transform methods.
翻译:本研究涉及巴伊西亚最佳实验设计对象征性发现的设计和应用,这是从具有一般功能形式的预测模型的观测数据中推断出来的,我们采用限制的第一阶方法优化适当的选择标准,使用汉密尔顿·蒙特卡洛作为前一个样本,通过数字集成或通过快速变换方法计算预测分布的一个步骤,涉及变化。