Presence-only data are a typical occurrence in species distribution modeling. They include the presence locations and no information on the absence. Their modeling usually does not account for detection biases. In this work, we aim to merge three different sources of information to model the presence of marine mammals. The approach is fully general and it is applied to two species of dolphins in the Central Tyrrhenian Sea (Italy) as a case study. Data come from the Italian Environmental Protection Agency (ISPRA) and Sapienza University of Rome research campaigns, and from a careful selection of social media (SM) images and videos. We build a Log Gaussian Cox process where different detection functions describe each data source. For the SM data, we analyze several choices that allow accounting for detection biases. Our findings allow for a correct understanding of Stenella coeruleoalba and Tursiops truncatus distribution in the study area. The results prove that the proposed approach is broadly applicable, it can be widely used, and it is easily implemented in the R software using INLA and inlabru. We provide examples' code with simulated data in the supplementary materials.
翻译:仅存在数据是物种分布模型中的一种典型现象,其中包括存在地点,没有关于不存在的信息。它们的建模通常不考虑检测偏差。在这项工作中,我们的目标是合并三个不同的信息来源,以模拟海洋哺乳动物的存在。这种方法是完全通用的,作为案例研究适用于中蒂尔亨尼亚海(意大利)的两个海豚物种。数据来自意大利环境保护局(ISPRA)和罗马萨皮安萨大学的研究活动,以及仔细选择社交媒体图像和视频。我们建立了一个Log Gausian Cox进程,其中不同检测功能描述每个数据源。关于SM数据,我们分析几种选择,以便计算检测偏差。我们的调查结果有助于正确理解研究区Stenella coerunoalba和 Tursiops truncatus的分布。结果证明,拟议方法广泛适用,可以广泛使用,并且很容易在使用INLA和Inlabru的R软件中应用。我们用补充材料中的模拟数据提供示例代码。