Document-based Visual Question Answering examines the document understanding of document images in conditions of natural language questions. We proposed a new document-based VQA dataset, PDF-VQA, to comprehensively examine the document understanding from various aspects, including document element recognition, document layout structural understanding as well as contextual understanding and key information extraction. Our PDF-VQA dataset extends the current scale of document understanding that limits on the single document page to the new scale that asks questions over the full document of multiple pages. We also propose a new graph-based VQA model that explicitly integrates the spatial and hierarchically structural relationships between different document elements to boost the document structural understanding. The performances are compared with several baselines over different question types and tasks\footnote{The full dataset will be released after paper acceptance.
翻译:----
文档视觉问答研究探讨了自然语言问题条件下,对文档图像的文档理解。我们提出了一个新的文档视觉问答数据集PDF-VQA,全面考虑了各个方面的文档理解,包括文档元素识别、文档布局结构理解,以及上下文理解和关键信息提取。我们的PDF-VQA数据集扩展了当前在单个文档页面上进行文档理解的规模,包括多页文档的问答。我们还提出了一种新的基于图形的VQA模型,显式地集成了不同文档元素之间的空间和分层结构关系,以提高文档结构理解能力。我们比较了不同问题类型和任务上的多个基线体系的表现。在论文接受后,将公布完整数据集。