ODENet is a deep neural network architecture in which a stacking structure of ResNet is implemented with an ordinary differential equation (ODE) solver. It can reduce the number of parameters and strike a balance between accuracy and performance by selecting a proper solver. It is also possible to improve the accuracy while keeping the same number of parameters on resource-limited edge devices. In this paper, using Euler method as an ODE solver, a part of ODENet is implemented as a dedicated logic on a low-cost FPGA (Field-Programmable Gate Array) board, such as PYNQ-Z2 board. As ODENet variants, reduced ODENets (rODENets) each of which heavily uses a part of ODENet layers and reduces/eliminates some layers differently are proposed and analyzed for low-cost FPGA implementation. They are evaluated in terms of parameter size, accuracy, execution time, and resource utilization on the FPGA. The results show that an overall execution time of an rODENet variant is improved by up to 2.66 times compared to a pure software execution while keeping a comparable accuracy to the original ODENet.


翻译:ODENet是一个深层的神经网络结构,在其中安装了ResNet的堆叠结构,使用普通的差分方程式(ODE)求解器。它可以减少参数数量,并通过选择一个合适的求解器在准确性和性能之间取得平衡。还可以提高精确性,同时对资源有限的边缘设备保留相同数量的参数。在本文中,使用Euler方法作为ODE解答器,ODENet的一部分被作为低成本的FPGA(外地可配置门阵列)板(如PYNQ-Z2版板)的专用逻辑执行。ODENet变异体中,每个变体都大量使用ODEnets(RODEnets)的某一部分,并减少/消除某些层次,但提议和分析这些变异,以便低成本的FPGGA实施。在参数大小、精度、执行时间和资源利用方面对ODENet进行了评估。结果显示,与纯软件执行相比,RODENet变体的总体执行时间提高到2.66倍。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【ECCV2020-华为】车道线架构搜索框架
专知会员服务
23+阅读 · 2020年9月23日
专知会员服务
18+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
61+阅读 · 2020年3月19日
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
0+阅读 · 2021年5月19日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【ECCV2020-华为】车道线架构搜索框架
专知会员服务
23+阅读 · 2020年9月23日
专知会员服务
18+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
深度学习模型剪枝:Slimmable Networks三部曲
极市平台
3+阅读 · 2020年2月22日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员