The rapid growth of time-sensitive applications and services has driven enhancements to computing infrastructures. The main challenge that needs addressing for these applications is the optimal placement of the end-users demands to reduce the total power consumption and delay. One of the widely adopted paradigms to address such a challenge is fog computing. Placing fog units close to end-users at the edge of the network can help mitigate some of the latency and energy efficiency issues. Compared to the traditional hyperscale cloud data centres, fog computing units are constrained by computational power, hence, the capacity of fog units plays a critical role in meeting the stringent demands of the end-users due to intensive processing workloads. In this paper, we aim to optimize the placement of virtual machines (VMs) demands originating from end-users in a fog computing setting by formulating a Mixed Integer Linear Programming (MILP) model to minimize the total power consumption through the use of a federated architecture made up of multiple distributed fog cells. The obtained results show an increase in processing capacity in the fog layer and a reduction in the power consumption by up to 26% compared to the Non-Federated fogs network.


翻译:时间敏感应用和服务的迅速增长推动了对计算基础设施的增强。这些应用需要解决的主要挑战是优化终端用户需求的位置,以减少总电耗和延迟。应对这种挑战的一个广泛采用的范例是雾计算。将雾单位贴近网络边缘的终端用户,可有助于减轻一些悬浮和能源效率问题。与传统的超大型云计算中心相比,雾计算单位受到计算力的制约,因此,雾单位在满足终端用户因处理工作量密集而产生的严格需求方面发挥着关键作用。在本文件中,我们的目标是优化将来自终端用户的虚拟机器(VMS)需求放置在雾计算中,为此制定混合整流线性规划模型(MILP),以便通过使用由多种分散的雾电池组成的绝缘结构,最大限度地减少总电耗量。获得的结果显示,雾层的处理能力有所增强,电力消耗量比非离子雾网络减少26%。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
51+阅读 · 2021年6月30日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Federated Learning in Multi-RIS Aided Systems
Arxiv
0+阅读 · 2021年7月8日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年6月30日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员