We compare the potential of neural network (NN)-based channel estimation with classical linear minimum mean square error (LMMSE)-based estimators, also known as Wiener filtering. For this, we propose a low-complexity recurrent neural network (RNN)-based estimator that allows channel equalization of a sequence of channel observations based on independent time- and frequency-domain long short-term memory (LSTM) cells. Motivated by Vehicle-to-Everything (V2X) applications, we simulate time- and frequency-selective channels with orthogonal frequency division multiplex (OFDM) and extend our channel models in such a way that a continuous degradation from line-of-sight (LoS) to non-line-of-sight (NLoS) conditions can be emulated. It turns out that the NN-based system cannot just compete with the LMMSE equalizer, but it also can be trained w.r.t. resilience against system parameter mismatch. We thereby showcase the conceptual simplicity of such a data-driven system design, as this not only enables more robustness against, e.g., signal-to-noise-ratio (SNR) or Doppler spread estimation mismatches, but also allows to use the same equalizer over a wider range of input parameters without the need of re-building (or re-estimating) the filter coefficients. Particular attention has been paid to ensure compatibility with the existing IEEE 802.11p piloting scheme for V2X communications. Finally, feeding the payload data symbols as additional equalizer input unleashes further performance gains. We show significant gains over the conventional LMMSE equalization for highly dynamic channel conditions if such a data-augmented equalization scheme is used.


翻译:我们将基于神经网络(NN)的频道估计潜力与古典线性最小平均差平方差(LMMSE)的测深器(也称为Wiener过滤器)进行比较。 为此,我们提议了一个低复杂性经常性神经网络(RNN)基于网络的测深器(RNN)的测深器,允许频道在独立的时间和频率-频率-长期短期内存(LSTM)的基础上对频道观测序列进行均匀。受“车辆对一切(V2X)”应用的激励,我们模拟基于或调频分多功能(OFDM)的测算器(LMS)的测算器,并扩展我们的频道的兼容性模型,以便从“视线(LOS)”到“无线-视距(NLLLLS)”的连续性变异性变异性(LLS)的测算器持续率。 NER的测算法不能与LMS(LMS)的测算法相比,如果“Vr.t.I-real-ral-lational-lational-lational laisal laislational yal Syal yal lax)的测算系统的测算系统的测算,也不能的测算法,也使得LO-sal-l-s的测算能能能能能能能能能够比等高的测算结果,也比。

1
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月12日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
3+阅读 · 2018年10月25日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
VIP会员
相关VIP内容
相关资讯
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员