We present results on the number of linear regions of the functions that can be represented by artificial feedforward neural networks with maxout units. A rank-k maxout unit is a function computing the maximum of $k$ linear functions. For networks with a single layer of maxout units, the linear regions correspond to the upper vertices of a Minkowski sum of polytopes. We obtain face counting formulas in terms of the intersection posets of tropical hypersurfaces or the number of upper faces of partial Minkowski sums, along with explicit sharp upper bounds for the number of regions for any input dimension, any number of units, and any ranks, in the cases with and without biases. Based on these results we also obtain asymptotically sharp upper bounds for networks with multiple layers.
翻译:我们展示了可使用最大单位的人工进料神经网络代表的功能线性区域数量的结果。 一级至k最大单位是计算最大值为k美元线性函数的函数。 对于单层最大值单位的网络, 线性区域与Minkowski多面体之和的上脊椎相对应。 我们从热带超表层的交叉面状或部分Minkowski数字的上面数获得面值计算公式, 以及任何输入维度的区域数、 任何单位数量以及任何级别, 在有偏见和不带偏见的情况下, 任何单位数量和任何级别。 基于这些结果, 我们还获得多层网络的无症状的尖度上限。