In this paper we study the high-dimensional super-resolution imaging problem. Here we are given an image of a number of point sources of light whose locations and intensities are unknown. The image is pixelized and is blurred by a known point-spread function arising from the imaging device. We encode the unknown point sources and their intensities via a nonnegative measure and we propose a convex optimization program to find it. Assuming the device's point-spread function is component-wise decomposable, we show that the optimal solution is the true measure in the noiseless case, and it approximates the true measure well in the noisy case with respect to the generalized Wasserstein distance. Our main assumption is that the components of the point-spread function form a Tchebychev system ($T$-system) in the noiseless case and a $T^*$-system in the noisy case, mild conditions that are satisfied by Gaussian point-spread functions. Our work is a generalization to all dimensions of the work (Eftekhari, Bendory, & Tang, 2021) where the same analysis is carried out in 2 dimensions. We resolve an open problem posed in (Schiebinger, Robeva, & Recht, 2018) in the case when the point-spread function decomposes.
翻译:在本文中,我们研究高维超分辨率成像问题。 我们在这里看到一些点光源的图像, 这些光源的位置和强度都不为人知。 图像是像素化的, 被图像设备产生的已知点分布功能模糊。 我们通过非负度测量来编码未知点源及其强度, 我们提出一个连接优化程序来找到它。 假设该设备点分布功能是分向分解的, 我们显示最佳的解决方案是无噪音情况下的真实度量, 并且它与广泛的瓦瑟斯坦距离的噪音中的真实度相近。 我们的主要假设是, 点分布函数的组件构成无噪音情况下的切比切夫系统($- System), 以及噪音情况下的 $T$- 优化系统 。 假设该设备点分布功能是可分化功能的成分, 我们的工作是对所有工作层面的概括化度度( Eftkhari, Bendory, & Tang, 2021) 的精确度大小度, 在2S 中, 进行相同的平面 分析时, 显示 REBS 的平面 功能。