An essential ingredient in many examples of the conflict between quantum theory and noncontextual hidden variables (e.g., the proof of the Kochen-Specker theorem and Hardy's proof of Bell's theorem) is a set of atomic propositions about the outcomes of ideal measurements such that, when outcome noncontextuality is assumed, if proposition $A$ is true, then, due to exclusiveness and completeness, a nonexclusive proposition $B$ (resp. $C$) must be false (resp. true). We call such a set a true-implies-false set (TIFS) [resp. true-implies-true set (TITS)]. Here we identify all the minimal TIFSs and TITSs in every dimension $d \ge 3$, i.e., the sets of each type having the smallest number of propositions. These sets are important because each of them leads to a proof of impossibility of noncontextual hidden variables and corresponds to a simple situation with quantum vs classical advantage. Moreover, the methods developed to identify them may be helpful to solve some open problems regarding minimal Kochen-Specker sets.
翻译:量子理论和非理论隐藏变量之间冲突的许多例子(例如,Kochen-Specker 理论和Hardy对Bell理论的证据)中的一个基本要素是一套关于理想测量结果的原子主张,因此,如果假定结果不真实,那么由于独一性和完整性,非排他性主张$A$必须是虚假的(重复真实的)。我们称之为一套真实的隐含物套(TIFS)[重印真实的易碎物套 (TITS) 。在这里,我们确定了每个维度中最低的TIFS和TITS,即3美元=Ge 3美元,即每种类型各组都有最小数量的主张,这些套很重要,因为它们都能够证明不可能存在非外相隐含的变量,并且符合一个简单的情况,具有量子和古典的优势。此外,在这里,为了查明它们而开发的方法或许有助于解决有关最小的Kopechen数据集的一些问题。