With the development of Internet-of-Things (IoT), we witness the explosive growth in the number of devices with sensing, computing, and communication capabilities, along with a large amount of raw data generated at the network edge. Mobile (multi-access) edge computing (MEC), acquiring and processing data at network edge (like base station (BS)) via wireless links, has emerged as a promising technique for real-time applications. In this paper, we consider the scenario that multiple devices sense then offload data to an edge server/BS, and the offloading throughput maximization problems are studied by joint radio-and-computation resource allocation, based on time-division multiple access (TDMA) and non-orthogonal multiple access (NOMA) multiuser computation offloading. Particularly, we take the sequence of TDMA-based multiuser transmission/offloading into account. The studied problems are NP-hard and non-convex. A set of low-complexity algorithms are designed based on decomposition approach and exploration of valuable insights of problems. They are either optimal or can achieve close-to-optimal performance as shown by simulation. The comprehensive simulation results show that the sequence optimized TDMA scheme achieves better throughput performance than the NOMA scheme, while the NOMA scheme is better under the assumptions of time-sharing strategy and the identical sensing capability of the devices.


翻译:随着互联网连接的发展,我们看到了具有遥感、计算和通信能力的装置数目的爆炸性增长,以及网络边缘产生的大量原始数据。移动(多接入)边缘计算(MEC),通过无线连接获取和处理网络边缘(类似于基站(BS))的数据,已成为实时应用的一个有希望的技术。在本文中,我们认为多种装置感知然后将数据卸载到边缘服务器/BS的情景,通过联合分配无线电和计算资源来研究脱压的最大化问题,这种分配基于时间对视多存(TDMA)和非横向多接入(NOMA)多用户计算卸载。特别是,我们考虑到基于TDMA的多用户传输/卸载的顺序。所研究的问题是NP硬和非convex。一套低兼容性算法是建立在解析方法和对问题进行宝贵洞察的基础上设计的。它们要么是最佳的,要么是能够实现近距离多访问(TDMA)多用户计算结果,而NOMA的模拟方案则是通过更好的模拟方式显示最优化的状态。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
67+阅读 · 2020年2月29日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员