The busy beaver value BB($n$) is the maximum number of steps made by any $n$-state, 2-symbol deterministic halting Turing machine starting on blank tape, and BB($n,k$) denotes its $k$-symbol generalisation to $k\geq 2$. The busy beaver function $n \mapsto \text{BB}(n)$ is uncomputable and its values have been linked to hard open problems in mathematics and notions of unprovability. In this paper, we show that there are two explicit Turing machines, one with 15 states and 2 symbols, the other with 5 states and 4 symbols, that halt if and only if the following Collatz-related conjecture by Erd\H{o}s [1979] does not hold does not hold: for all $n>8$ there is at least one digit 2 in the base 3 representation of $2^n$. This result implies that knowing the values of BB(15) or BB(5,4) is at least as hard as solving Erd\H{o}s' conjecture and makes, to date, BB(15) the smallest busy beaver value that is related to a natural open problem in mathematics. For comparison, Yedidia and Aaronson [2016] show that knowing BB(4,888) and BB(5,372) are as hard as solving Goldbach's conjecture and the Riemann hypothesis, respectively (later informally improved to BB(27) and BB(744)). Finally, our result puts a finite, albeit large, bound on Erd\H{o}s' conjecture, by making it equivalent to the following finite statement: for all $8 < n \leq \min(\text{BB}(15), \text{BB}(5,4))$ there is at least one digit 2 in the base 3 representation of $2^n$.
翻译:繁忙 beaver 值 BB( $) 是任何 $ - state 、 2 符号确定性停止 Turing 机器以空白磁带启动的 $8 和 BB( $, k$) 表示其 $k$- 符号一般化为 $kgeq 2 。 繁忙 beaver 函数为 $n\ mapto\ text{BB} (n) 无法计算, 其值与数学和不透明概念的硬开放问题相关。 在本文中, 我们显示有两台清晰的 Turing 机器, 一个有 15 州和 2 符号, 另一个有 5 州和 4 符号, B( 美元, k) 表示如果以下的 colatz 相关直观不维持不变, 则停止 $n>8 。 对于所有 美元 的基数, 在 基数 3 3 表示中至少有一位数字 2 美元 。 这意味着了解 B( 15 或 B ( 5, B) 数字) 和 B 数字 的数值至少是硬值, 在 Erdeal_ 中显示 Erdeal_ 。