Analysing and modelling interactive behaviour is an important topic in human-computer interaction (HCI) and a key requirement for the development of intelligent interactive systems. Interactive behaviour has a sequential (actions happen one after another) and hierarchical (a sequence of actions forms an activity driven by interaction goals) structure, which may be similar to the structure of natural language. Designed based on such a structure, natural language processing (NLP) methods have achieved groundbreaking success in various downstream tasks. However, few works linked interactive behaviour with natural language. In this paper, we explore the similarity between interactive behaviour and natural language by applying an NLP method, byte pair encoding (BPE), to encode mouse and keyboard behaviour. We then analyse the vocabulary, i.e., the set of action sequences, learnt by BPE, as well as use the vocabulary to encode the input behaviour for interactive task recognition. An existing dataset collected in constrained lab settings and our novel out-of-the-lab dataset were used for evaluation. Results show that this natural language-inspired approach not only learns action sequences that reflect specific interaction goals, but also achieves higher F1 scores on task recognition than other methods. Our work reveals the similarity between interactive behaviour and natural language, and presents the potential of applying the new pack of methods that leverage insights from NLP to model interactive behaviour in HCI.
翻译:分析和建模交互行为是人机交互中的重要课题,也是智能交互系统发展的关键要求。交互行为具有顺序(一步步发生)和层次(一系列行为形成的活动受交互目标驱动)结构,这与自然语言的结构可能相似。基于这种结构设计,自然语言处理(NLP)方法已经在各种下游任务上取得了突破性的成功。然而,几乎没有工作将交互行为与自然语言联系起来。在本文中,我们通过将 NLP 方法——字节对编码(BPE)应用于鼠标和键盘行为的编码,探索交互行为和自然语言之间的相似性。我们分析了 BPE 学习到的词汇表,即行动序列的集合,以及用词汇表对交互任务识别的输入行为进行编码。我们使用一个现有的在受限制的实验室环境中收集的数据集和我们自行设计的越界数据集进行评估。结果表明,这种受自然语言启发的方法不仅学习了反映特定交互目标的动作序列,而且在任务识别方面取得了比其他方法更高的 F1 分数。我们的工作揭示了交互行为和自然语言之间的相似性,并展示了利用 NLP 洞见的新方法包,将其应用于人机交互中的交互行为建模的潜力。