Automated segmentation of anatomical sub-regions with high precision has become a necessity to enable the quantification and characterization of cells/ tissues in histology images. Currently, a machine learning model to analyze sub-anatomical regions of the brain to analyze 2D histological images is not available. The scientists rely on manually segmenting anatomical sub-regions of the brain which is extremely time-consuming and prone to labeler-dependent bias. One of the major challenges in accomplishing such a task is the lack of high-quality annotated images that can be used to train a generic artificial intelligence model. In this study, we employed a UNet-based architecture, compared model performance with various combinations of encoders, image sizes, and sample selection techniques. Additionally, to increase the sample set we resorted to data augmentation which provided data diversity and robust learning. In this study, we trained our best fit model on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability). The dataset comprises of different animal studies enabling the model to be trained on different datasets. The model effectively is able to detect two sub-regions compacta (SNCD) and reticulata (SNr) in all the images. In spite of limited training data, our best model achieves a mean intersection over union (IOU) of 79% and a mean dice coefficient of 87%. In conclusion, the UNet-based model with EffiecientNet as an encoder outperforms all other encoders, resulting in a first of its kind robust model for multiclass segmentation of sub-brain regions in 2D images.
翻译:解剖子分区的自动分解已变得有必要, 以便能够在组织图象中对细胞/ 组织进行量化和定性。 目前, 还没有一个机器学习模型来分析大脑的分解区域以分析 2D 组织图象。 科学家依靠人工分解大脑的解剖子区域, 这非常耗时, 容易出现标签偏差。 完成这一任务的主要挑战之一是缺少高质量的附加说明的多级图象, 可用于培训通用人工智能模型。 在这项研究中, 我们使用了基于UNet的模型结构, 用来分析大脑的分解区域, 分析2D 组织图象。 此外, 为了增加样本集, 我们使用数据放大, 提供数据多样性和可靠学习。 在这项研究中, 我们用大约一千个附加说明的2D型模型 脑图案模型图案模型, 和 Tylosine Hydroxperase enzeme (THTHE, DSSSSN) 的高级图案, 以UN为主, 以UNSNSSSN为主, 样模型, 的模型, 和SDSDSDA 。 数据分析结果为不同的区域, 数据模型, 数据模型, 不同, 数据模型, 数据模型为不同, 。