Normalizing flows are generative models that provide tractable density estimation by transforming a simple base distribution into a complex target distribution. However, this technique cannot directly model data supported on an unknown low-dimensional manifold, a common occurrence in real-world domains such as image data. Recent attempts to remedy this limitation have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation. We recover this benefit with Conformal Embedding Flows, a framework for designing flows that learn manifolds with tractable densities. We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data. To this end, we present a series of conformal building blocks and apply them in experiments with real-world and synthetic data to demonstrate that flows can model manifold-supported distributions without sacrificing tractable likelihoods.
翻译:标准化流是一种基因模型,通过将简单的基数分布转换成复杂的目标分布,提供可移动密度估计。然而,这一技术不能直接模拟以未知的低维多元支持的数据,这是在图像数据等现实世界领域常见的现象。最近试图纠正这一限制的几何复杂因素,使正常流无法产生核心效益:精确密度估计。我们利用“非正式嵌入流”这一框架来恢复这一效益,该模型用来设计以可移动密度学习流体的流体。我们争辩说,以可训练的符合嵌入方式构建标准流是模拟多维支持数据的最自然的方式。为此,我们提出了一系列符合要求的建筑块,并用于与现实世界和合成数据进行实验,以证明流动可以模拟多支持的分布而不会牺牲可移动的可能性。