Structural magnetic resonance imaging (sMRI) is widely used for brain neurological disease diagnosis; while longitudinal MRIs are often collected to monitor and capture disease progression, as clinically used in diagnosing Alzheimer's disease (AD). However, most current methods neglect AD's progressive nature and only take a single sMRI for recognizing AD. In this paper, we consider the problem of leveraging the longitudinal MRIs of a subject for AD identification. To capture longitudinal changes in sMRIs, we propose a novel model Longformer, a spatiotemporal transformer network that performs attention mechanisms spatially on sMRIs at each time point and integrates brain region features over time to obtain longitudinal embeddings for classification. Our Longformer achieves state-of-the-art performance on two binary classification tasks of separating different stages of AD using the ADNI dataset. Our source code is available at https://github.com/Qybc/LongFormer.
翻译:结构磁共振成像(sMRI)被广泛用于脑神经疾病诊断;虽然常收集纵向的共振器,以监测和捕捉疾病进展,作为诊断阿尔茨海默氏病(AD)的临床用途。然而,大多数现行方法忽视了AD的渐进性质,而只采用单一的SMRI来识别AD。在本文中,我们考虑了利用一个主题的纵向共振成像来进行自动识别的问题。为了捕捉SMI的纵向变化,我们提议建立一个新型的模型Longfrench,即一个间歇式变压器网络,在每一个时间点上对 sMRIs进行空间关注机制,并长期整合脑区域特征,以获得纵向嵌入分类。我们的Longformer在使用ADNI数据集分离不同阶段的两个二元分类任务上取得了最先进的表现。我们的源代码可在https://github.com/Qybc/LongFormer查阅。