Across Europe negative public opinion has and may continue to limit the deployment of renewable energy infrastructure required for the transition to net-zero energy systems. Understanding public sentiment and its spatio-temporal variations is as such important for decision-making and socially accepted energy systems. In this study, we apply a sentiment classification model based on a machine learning framework for natural language processing, NorBERT, on data collected from Twitter between 2006 and 2022 to analyse the case of wind power opposition in Norway. From the 68828 tweets with geospatial information, we show how discussions about wind power intensified in 2018/2019 together with a trend of more negative tweets up until 2020, both on a regional level and for Norway as a whole. Furthermore, we find weak geographical clustering in our data, indicating that discussions are country wide and not dominated by specific regional events or developments. Twitter data allows for detailed insight into the temporal nature of public sentiments and extending this research to additional case studies of technologies, countries and sources of data (e.g. newspapers, other social media) may prove important to complement traditional survey research and the understanding of public sentiment.
翻译:欧洲的负面公众舆论可能会限制可再生能源基础设施的部署。了解公众情绪及其时空变化对于决策制定和实现社会接受的能源系统至关重要。本研究使用基于自然语言处理的机器学习框架NorBERT的情感分类模型,对2006年至2022年期间在Twitter上收集的数据进行研究,以分析挪威风电反对案例。从含有地理空间信息的68828条推文中,我们展示了关于风电的讨论在2018/2019年加剧,并呈现更多的负面推文,直到2020年为止,这在区域层面和整个挪威都是如此。此外,我们发现数据中存在弱的地理聚类,表明讨论是全国性的,而不是由特定地区事件或发展所主导的。Twitter数据允许我们详细了解公众情绪的时间性质,将本研究扩展到其他技术、国家和数据来源(例如报纸、其他社交媒体)的案例研究可能证明对补充传统调查研究和了解公众情绪至关重要。