Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers. This makes it possible i) to train more accurate models due to learning from rich joint training data, and ii) to improve privacy by not sharing the workers' local private data with others. However, the distributed nature of FL makes it vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model while, unfortunately, being difficult to detect. Existing defenses against those attacks are limited by assumptions on the workers' data distribution, may degrade the global model performance on the main task and/or are ill-suited to high-dimensional models. In this paper, we analyze targeted attacks against FL and find that the neurons in the last layer of a deep learning (DL) model that are related to the attacks exhibit a different behavior from the unrelated neurons, making the last-layer gradients valuable features for attack detection. Accordingly, we propose \textit{FL-Defender} as a method to combat FL targeted attacks. It consists of i) engineering more robust discriminative features by calculating the worker-wise angle similarity for the workers' last-layer gradients, ii) compressing the resulting similarity vectors using PCA to reduce redundant information, and iii) re-weighting the workers' updates based on their deviation from the centroid of the compressed similarity vectors. Experiments on three data sets with different DL model sizes and data distributions show the effectiveness of our method at defending against label-flipping and backdoor attacks. Compared to several state-of-the-art defenses, FL-Defender achieves the lowest attack success rates, maintains the performance of the global model on the main task and causes minimal computational overhead on the server.


翻译:联邦学习( FL) 能够从一组参与工作者之间分布的当地数据中学习全球机器学习模式。 这使得能够 (i) 通过学习丰富的联合培训数据来培训更准确的模型, 并且 (ii) 通过不与其他人分享工人的本地私人数据来改善隐私。 然而, FL的分布性质使得它容易受到定向中毒袭击的伤害,这些袭击对所学模型的完整性产生了负面影响,而不幸的是,很难检测。 现有的防范这些袭击的防御受到工人数据分布假设的限制, 可能会降低主要任务的全球模型的维护性, 并且/ 或者不适合于高维度模型。 在本文件中,我们分析了针对FL的定向袭击, 发现与袭击有关的深层学习模型最后一层神经显示与不相关的神经有不同的行为, 使得最后一层梯度的值为袭击探测工作的宝贵特性。 因此, 我们提议使用Textit{ FLFL- Defender} 作为打击FL定向袭击的一种方法, 可能降低主要任务的效率, 并且( i) 通过计算工人- 直观的直径攻击的直径直径直径直径直径直径直径直径直径, 和直径直径直径直径直对三号, 使工的服务器的基数据更新, 基的计算, 基的直径直径直路基的计算, 基的基的基的计算, 以直径直径直路径直路径直路径直径直径直,,,,, 基 基 基 基 以基 基 基 基 基 基 基 以基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 的 的 的 基 基 的 的 的 基 基 基 基 基 的 基 基 基 的 基 基 的 的 的 的 的 基 基 基 基 基 基 的 的 的 的 的 的 的 的 保持 以基 基 基 基 基 基 基 基 基 基

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Federated Learning with Noisy Labels
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员