We analyse the forward error in the floating point summation of real numbers, from algorithms that do not require recourse to higher precision or better hardware. We derive informative explicit expressions, and new deterministic and probabilistic bounds for errors in three classes of algorithms: general summation,shifted general summation, and compensated (sequential) summation. Our probabilistic bounds for general and shifted general summation hold to all orders. For compensated summation, we also present deterministic and probabilistic first and second order bounds, with a first order bound that differs from existing ones. Numerical experiments illustrate that the bounds are informative and that among the three algorithm classes, compensated summation is generally the most accurate method.
翻译:我们从不需要使用更精密或更佳硬件的算法中分析真实数字浮动点总和的前向误差。 我们从三个类别的算法中得出信息化的清晰表达方式和新的确定性和概率界限,以弥补错误: 普通总和、 变换式总和和和补偿( 顺序) 和补偿( 顺序) 。 我们的通用总和和和转移总和的概率界限维持在所有订单上。 对于补偿性总和的概率界限, 我们还提出确定性和概率第一和第二顺序界限, 第一个顺序的界限与现有界限不同。 数字实验表明,这些界限是知情的,在三个算法类别中,补偿性总和通常是最准确的方法。