Brouwer's fixed point theorem states that any continuous function from a compact convex space to itself has a fixed point. Roughgarden and Weinstein (FOCS 2016) initiated the study of fixed point computation in the two-player communication model, where each player gets a function from $[0,1]^n$ to $[0,1]^n$, and their goal is to find an approximate fixed point of the composition of the two functions. They left it as an open question to show a lower bound of $2^{\Omega(n)}$ for the (randomized) communication complexity of this problem, in the range of parameters which make it a total search problem. We answer this question affirmatively. Additionally, we introduce two natural fixed point problems in the two-player communication model. $\bullet$ Each player is given a function from $[0,1]^n$ to $[0,1]^{n/2}$, and their goal is to find an approximate fixed point of the concatenation of the functions. $\bullet$ Each player is given a function from $[0,1]^n$ to $[0,1]^{n}$, and their goal is to find an approximate fixed point of the interpolation of the functions. We show a randomized communication complexity lower bound of $2^{\Omega(n)}$ for these problems (for some constant approximation factor). Finally, we initiate the study of finding a panchromatic simplex in a Sperner-coloring of a triangulation (guaranteed by Sperner's lemma) in the two-player communication model: A triangulation $T$ of the $d$-simplex is publicly known and one player is given a set $S_A\subset T$ and a coloring function from $S_A$ to $\{0,\ldots ,d/2\}$, and the other player is given a set $S_B\subset T$ and a coloring function from $S_B$ to $\{d/2+1,\ldots ,d\}$, such that $S_A\dot\cup S_B=T$, and their goal is to find a panchromatic simplex. We show a randomized communication complexity lower bound of $|T|^{\Omega(1)}$ for the aforementioned problem as well (when $d$ is large).


翻译:Brouwer 的固定点理论表示, 任何从压缩的 comvex 空间到它本身的连续功能都有一个固定点。 Troughgarden 和 Weinstein (FOCS 2016) 在两个玩家的通信模式中启动了固定点计算研究, 每个玩家的函数从 $0, 1美元到 $0, 1美元, 他们的目标是找到两个函数构成的大致固定点。 它们留下一个未解决的问题, 以显示2 美元左右的 commer 空间, 2美元为2 美元。 在参数范围内, 使得它成为一个完全搜索问题。 我们肯定地回答这个问题。 在两个玩家的通信模式中, $0, 1美元到 $ $ $, 他们的目标是从 $0, 1美元到 美元 元元元元的游戏。 每个玩家从 $0, 美元到 美元 美元 的运行方的运行方 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月14日
A Computational Model for Logical Analysis of Data
Arxiv
0+阅读 · 2022年7月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员