Chemical process optimization maximizes production efficiency and economic performance, but optimization algorithms, including gradient-based solvers, numerical methods, and parameter grid searches, become impractical when operating constraints are ill-defined or unavailable. We present a multi-agent LLM framework that autonomously infers operating constraints from minimal process descriptions, then collaboratively guides optimization. Our AutoGen-based framework employs OpenAI's o3 model with specialized agents for constraint generation, parameter validation, simulation, and optimization guidance. Through autonomous constraint generation and iterative multi-agent optimization, the framework eliminates the need for predefined operational bounds. Validated on hydrodealkylation across cost, yield, and yield-to-cost ratio metrics, the framework achieved competitive performance with conventional methods while reducing wall-time 31-fold relative to grid search, converging in under 20 minutes. The reasoning-guided search demonstrates sophisticated process understanding, correctly identifying utility trade-offs and applying domain-informed heuristics. Unlike conventional methods requiring predefined constraints, our approach uniquely combines autonomous constraint generation with interpretable parameter exploration. Model comparison reveals reasoning-capable architectures (o3, o1) are essential for successful optimization, while standard models fail to converge. This approach is particularly valuable for emerging processes and retrofit applications where operational constraints are poorly characterized or unavailable.
翻译:化工过程优化旨在最大化生产效率与经济性能,但当操作约束定义不清或不可获取时,包括基于梯度的求解器、数值方法和参数网格搜索在内的优化算法往往难以实际应用。本文提出一种多智能体LLM框架,能够从最小化的过程描述中自主推断操作约束,并协同引导优化过程。该基于AutoGen的框架采用OpenAI的o3模型,配备专门用于约束生成、参数验证、仿真和优化引导的智能体。通过自主约束生成与迭代式多智能体优化,该框架无需预定义操作边界。在加氢脱烷基化过程中,针对成本、收率及收率-成本比等指标进行验证,该框架取得了与传统方法相竞争的性能,同时将计算时间较网格搜索缩短31倍,在20分钟内收敛。推理引导的搜索展现出对过程的深刻理解,能够正确识别效用权衡并应用基于领域知识的启发式策略。与传统方法需要预定义约束不同,本方法创新性地将自主约束生成与可解释的参数探索相结合。模型对比表明,具备推理能力的架构(o3、o1)是实现成功优化的关键,而标准模型则无法收敛。该方法对于操作约束尚未明确或难以获取的新兴工艺及改造应用场景具有重要价值。