This paper presents a tractable model of non-linear dynamics of market returns using a Langevin approach. Due to non-linearity of an interaction potential, the model admits regimes of both small and large return fluctuations. Langevin dynamics are mapped onto an equivalent quantum mechanical (QM) system. Borrowing ideas from supersymmetric quantum mechanics (SUSY QM), a parameterized ground state wave function (WF) of this QM system is used as a direct input to the model, which also fixes a non-linear Langevin potential. Using a two-component Gaussian mixture as a ground state WF with an asymmetric double well potential produces a tractable low-parametric model with interpretable parameters, referred to as the NES (Non-Equilibrium Skew) model. Supersymmetry (SUSY) is then used to find time-dependent solutions of the model in an analytically tractable way. Additional approximations give rise to a final practical version of the NES model, where real-measure and risk-neutral return distributions are given by three component Gaussian mixtures. This produces a closed-form approximation for option pricing in the NES model by a mixture of three Black-Scholes prices, providing accurate calibration to option prices for either benign or distressed market environments, while using only a single volatility parameter. These results stand in stark contrast to the most of other option pricing models such as local, stochastic, or rough volatility models that need more complex specifications of noise to fit the market data.
翻译:本文展示了使用 Langevin 方法的非线性市场回报动态的可移植模型。 由于互动潜力的不线性, 模型承认了小和大回报波动的系统。 Langevin 动态被映入等量机械(QM)系统。 从超对称量量机械(SUSY QM) 中借用想法, 这个QM 系统的一个参数化地面状态波函数(WF) 被作为模型的直接输入, 该模型也固定了一个非线性朗埃文潜力。 由于互动潜力的不线性, 模型承认了两种成分高斯混合物作为地面状态的复合基金, 并且具有不对称的双倍性规格, 模型承认了一种可解释参数的可移动性低度模型, 被称为 NES (NES QQQ) 的等量子机械(QM QM QM ) 系统。 然后, 将超度量量量量量量量技术(WF) 系统(WF) 的理念作为该模型的一种直接输入的时间性解决方案, 。 额外精确度精确度的地面状态使 NESAF 模型的模型更适合,, 模型的精确性模型的精确和风险回报分布分布分布分布的模型仅由三种模型由三种模型提供。