We develop a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance. Our approach combines a regularized Mahalanobis-distance-based soft k-means clustering procedure with a modified state of the art neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data. We evaluate our method on transductive few-shot learning tasks, in which the goal is to jointly predict labels for query (test) examples given a set of support (training) examples. We achieve state-of-the-art performance on the Meta-Dataset, mini-ImageNet and tiered-ImageNet benchmarks.
翻译:我们开发了一种感应元学习方法,使用未贴标签的实例来改进微小图像分类性能。我们的方法将正规化的马哈拉诺比(Mahalanobis)远程软K means集群程序与改良的神经适应特性提取器结合起来,以便利用未贴标签的数据提高测试时间分类的准确性。我们评估了我们关于感应微小的学习任务的方法,目的是共同预测查询(测试)实例的标签,并给出一系列支持(培训)实例。我们在Meta-Dataset、Mini-ImageNet和分层图像网络基准上取得了最先进的表现。