Mendelian randomization (MR) is a popular instrumental variable (IV) approach, in which genetic markers are used as IVs. In order to improve efficiency, multiple markers are routinely used in MR analyses, leading to concerns about bias due to possible violation of IV exclusion restriction of no direct effect of any IV on the outcome other than through the exposure in view. To address this concern, we introduce a new class of Multiply Robust MR (MR$^2$) estimators that are guaranteed to remain consistent for the causal effect of interest provided that at least one genetic marker is a valid IV without necessarily knowing which IVs are invalid. We show that the proposed MR$^2$ estimators are a special case of a more general class of estimators that remain consistent provided that a set of at least $k^{\dag}$ out of $K$ candidate instrumental variables are valid, for $k^{\dag}\leq K$ set by the analyst ex ante, without necessarily knowing which IVs are invalid. We provide formal semiparametric theory supporting our results, and characterize the semiparametric efficiency bound for the exposure causal effect which cannot be improved upon by any regular estimator with our favorable robustness property. We conduct extensive simulation studies and apply our methods to a large-scale analysis of UK Biobank data, demonstrating the superior empirical performance of MR$^2$ compared to competing MR methods.


翻译:为了提高效率,在管理分析中经常使用多种标记,从而引起对可能违反四类排除限制的偏见的关切,任何四类排除限制除接触外,对结果不会产生直接的影响。为了解决这一关切,我们引入了一个新的类别,即Muliply Robust MR(MR$=2美元),保证对利息的因果关系保持一致,条件是至少一个基因标记是有效的四类,不一定知道什么是无效的。我们表明,拟议的MR$2的估算值是一个特殊的例子,因为可能违反四类排除限制,而任何四类排除对结果没有直接影响,除了通过接触外,对结果没有直接影响。为了解决这一关切,我们引入了一个新的类别,即MMMM(MR)(M)(MR)(M) (M) (MR) (MR) (M) (MR) (MR) (M) (MMR) (M) (M) (MR) (MM) (MR$=2) (M) (M) (MR) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M(M) (M(M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
Arxiv
9+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
Top
微信扫码咨询专知VIP会员