We consider a class of Cox models with time-dependent effects that may be zero over certain unknown time regions or, in short, sparse time-varying effects. The model is particularly useful for biomedical studies as it conveniently depicts the gradual evolution of effects of risk factors on survival. Statistically, estimating and drawing inference on infinite dimensional functional parameters with sparsity (e.g., time-varying effects with zero-effect time intervals) present enormous challenges. To address them, we propose a new soft-thresholding operator for modeling sparse, piecewise smooth and continuous time-varying coefficients in a Cox time-varying effects model. Unlike the common regularized methods, our approach enables one to estimate non-zero time-varying effects and detect zero regions simultaneously, and construct a new type of sparse confidence intervals that accommodate zero regions. This leads to a more interpretable model with a straightforward inference procedure. We develop an efficient algorithm for inference in the target functional space, show that the proposed method enjoys desired theoretical properties, and present its finite sample performance by way of simulations. We apply the proposed method to analyze the data of the Boston Lung Cancer Survivor Cohort, an epidemiological cohort study investigating the impacts of risk factors on lung cancer survival, and obtain clinically useful results.
翻译:我们认为,在一定未知的时间区里,或短时间变化效应的短暂时间变化效应中,具有时间依赖效应的Cox模型可能是零的,这种模型对于生物医学研究特别有用,因为它方便地描述了风险因素对生存的影响的逐步演变。从统计上看,估计和推断具有零度的无限维功能参数(例如时间变化效应,零效果间隔)会带来巨大的挑战。为了解决这些问题,我们提议在Cox时间变化效应模型中,建立一个新的软保值操作员,以模拟稀薄、平滑和连续的时间变化系数。与通常的常规化方法不同,我们的方法使一个人能够估计非零时间变化效应,同时探测零区域,并建立一个适合零区域的新类型的稀薄信任间隔。这导致一种解释性更强的模型,采用直截的推断程序。我们为在目标功能空间中的推断制定了一种高效的算法,表明拟议的方法具有理想的理论性质,并通过模拟方式展示其有限的样本性表现。我们采用的拟议方法,可以同时估算非零时间变化效应,同时探测零位区域,并构建一种适合零度的信任间隔间隔间间隔间间隔间间隔间断的模型。我们用的方法,以研究研究波士顿癌症的临床癌症的临床结果。