The ability to adapt to changing conditions is a key feature of a successful autonomous system. In this work, we use the Recursive Gaussian Processes (RGP) for identification of the quadrotor air drag model online, without the need of training data. The identified drag model then augments a physics-based model of the quadrotor dynamics, which allows more accurate quadrotor state prediction with increased ability to adapt to changing conditions. This data-augmented physics-based model is utilized for precise quadrotor trajectory tracking using the suitably modified Model Predictive Control (MPC) algorithm. The proposed modelling and control approach is evaluated using the Gazebo simulator and it is shown that the proposed approach tracks a desired trajectory with a higher accuracy compared to the MPC with the non-augmented (purely physics-based) model.
翻译:能够适应不断变化的条件是一个成功的自主系统的关键特征。在这项工作中,我们使用递归高斯过程(RGP)在线识别四旋翼气动阻力模型,无需训练数据。然后,已识别的阻力模型会增强四旋翼动力学的基于物理学的模型,从而实现更精准的四旋翼状态预测并增强适应不断变化的能力。这种增强型基于物理学的数据模型被用于使用修改后的模型预测控制(MPC)算法进行精确定位四旋翼轨迹跟踪。该建模和控制方法经过Gazebo模拟器评估,显示出相比于具有不增强(纯物理学的)模型的MPC,该方法更精确地跟踪所需轨迹的能力。