A graph $H$ is said to be common if the number of monochromatic labelled copies of $H$ in a red/blue edge colouring of a large complete graph is asymptotically minimized by a random colouring with an equal proportion of each colour. We extend this notion to an asymmetric setting. That is, we define a pair $(H_1,H_2)$ of graphs to be $(p,1-p)$-common if a particular linear combination of the density of $H_1$ in red and $H_2$ in blue is asymptotically minimized by a random colouring in which each edge is coloured red with probability $p$ and blue with probability $1-p$. We extend many of the results on common graphs to this asymmetric setting. In addition, we obtain several novel results for common pairs of graphs with no natural analogue in the symmetric setting. We also obtain new examples of common graphs in the classical sense and propose several open problems.
翻译:如果一个大整张图的红色/蓝色边缘颜色中的单色标签印数在红色/蓝色边缘中以美元标注的单色标本数被随机的颜色和每种颜色比例相等的颜色逐渐最小化,则该图是常见的。我们把这个概念扩大到一个不对称的设置。也就是说,我们定义一对(H_1,H_2)美元的图表是普通的(p,1-p)美元,如果将红色1美元和蓝色2美元密度的特定线性组合通过随机颜色将每个边缘的颜色以概率1美元为红色和蓝色的颜色以概率为1美元为蓝色的颜色为最小化。我们将共同图表上的许多结果推广到这个不对称的设置。此外,我们还为在对称设置中没有自然类比的通用图表配对取得了一些新的结果。我们还获得了一些古典意义上通用图表的新例子,并提出了几个公开的问题。