There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which,in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations {\alpha} and \b{eta} that encode, respectively, the causal and noncausal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and two large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence.
翻译:最近出现了一种趋势,即利用图形神经网络的力量来进行基于大脑网络的精神病诊断,这反过来又促使精神病学家迫切需要充分了解用过的神经网络的决策行为。然而,大多数现有的GNN解释器要么是热后模型,需要创建另一个解释模型来解释受过良好训练的GNN,或者不考虑所提取的解释和决定之间的因果关系,这样解释本身就包含虚假的关联,并且受到不忠实的忠实感的影响。在这项工作中,我们提议了一个有因果诱导的图形神经网络(CI-GNNN),这是精神病学家们充分理解用过的GNNNNNN的判断行为。 但是,大多数现有的GNNNN解释器的解释器,要么是用来解释与决定有影响力的子模型(例如,主要压抑性精神病患者或健康控制),而没有训练一个精细的解释网络。 CI-GNNNN有分解的子层次显示的分解度。在C的原始的直径直径直径解释仪-直径解释中,我们用C的直径直的直径直径直基数据和直径直径直径直径直径直的GMMIG的根基数据框架下, 也通过C的直径直径直的直径直的直的直的C-C-C的直的直的直的根基基基的根基的根基的根基数据和不直的根基基基的根基的根基的根根基的根基的根根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的