Detailed mobile sensing data from phones, watches, and fitness trackers offer an unparalleled opportunity to quantify and act upon previously unmeasurable behavioral changes in order to improve individual health and accelerate responses to emerging diseases. Unlike in natural language processing and computer vision, deep representation learning has yet to broadly impact this domain, in which the vast majority of research and clinical applications still rely on manually defined features and boosted tree models or even forgo predictive modeling altogether due to insufficient accuracy. This is due to unique challenges in the behavioral health domain, including very small datasets (~10^1 participants), which frequently contain missing data, consist of long time series with critical long-range dependencies (length>10^4), and extreme class imbalances (>10^3:1).
翻译:电话、手表和健身跟踪器提供的详细移动感测数据提供了一个无与伦比的机会来量化和应对先前无法衡量的行为变化,以改善个人健康和加速应对新出现疾病。 与自然语言处理和计算机视觉不同,深层代表性学习尚未对这一领域产生广泛影响,因为绝大多数研究和临床应用仍然依赖人工界定的特征和树型推树模型,甚至由于准确性不足而完全放弃预测模型。 这是因为行为健康领域面临独特的挑战,包括往往包含缺失数据的非常小的数据集(~10 ⁇ 1人),其中包括长时间序列和关键的长距离依赖(长度 > 10 ⁇ 4),以及极端阶级失衡( > 10 ⁇ 3:1 )。