We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property $\phi$ is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of $\phi$. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity.
翻译:----
本文研究预测监测(PM)问题, 即从当前系统状态预测期望的属性是否被满足。由于它在运行时的安全保证和在线控制中的重要性,需要高效的PM方法来及时干预预测的违规情况,并提供正确性保证。我们引入量化预测监测(QPM),这是第一种支持随机过程和富含符号时间逻辑(STL)规范的PM方法。与现有的大多数PM技术只预测属性ϕ是否被满足不同,QPM通过预测量化(又名鲁棒)STL语义的满足度来提供量化测量。QPM推导出高效计算和具有概率保证的预测区间,其中区间根据系统的随机演变覆盖STL鲁棒值。为此,我们采用机器学习方法,利用最近在分位数回归中的一致推断方面的进展,从而避免在运行时进行昂贵的蒙特卡洛模拟来估计区间。我们还展示了如何以组合的方式处理复合公式,而不需要重新培训预测器,并保证正确性。我们通过对四种离散时间随机过程的基准测试,演示了QPM的有效性和可扩展性。