Recent work has shown that deep learning models can be used to classify land-use data from geospatial satellite imagery. We show that when these deep learning models are trained on data from specific continents/seasons, there is a high degree of variability in model performance on out-of-sample continents/seasons. This suggests that just because a model accurately predicts land-use classes in one continent or season does not mean that the model will accurately predict land-use classes in a different continent or season. We then use clustering techniques on satellite imagery from different continents to visualize the differences in landscapes that make geospatial generalization particularly difficult, and summarize our takeaways for future satellite imagery-related applications.


翻译:最近的工作表明,可以利用深层次学习模型从地理空间卫星图像中对土地使用数据进行分类,我们表明,当这些深层次学习模型接受特定大陆/季节数据培训时,在山外大陆/季节的模型性能差异很大,这表明,仅仅因为模型准确预测一个大陆或季节的土地使用等级并不意味着模型将准确预测不同大陆或季节的土地使用等级。 然后,我们利用不同大陆卫星图像的集群技术来直观造成地理空间普遍化特别困难的地貌差异,并总结我们今后卫星图像应用的取景。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
24+阅读 · 2021年1月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Arxiv
24+阅读 · 2021年1月25日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年12月3日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员