With the rapid growth of malware attacks, more antivirus developers consider deploying machine learning technologies into their productions. Researchers and developers published various machine learning-based detectors with high precision on malware detection in recent years. Although numerous machine learning-based malware detectors are available, they face various machine learning-targeted attacks, including evasion and adversarial attacks. This project explores how and why adversarial examples evade malware detectors, then proposes a randomised chaining method to defend against adversarial malware statically. This research is crucial for working towards combating the pertinent malware cybercrime.
翻译:随着恶意软件袭击的迅速增长,更多的反病毒开发者考虑将机器学习技术运用到他们的生产中。研究人员和开发者发表了各种机器学习检测器,近年来在恶意软件检测方面非常精确。虽然有许多机器学习恶意软件检测器,但他们面临着各种机器学习目标袭击,包括逃学和对抗性袭击。这个项目探索了对抗性实例如何和为什么逃避恶意软件检测,然后提出了一种随机化的链条方法,以静态防范对抗对抗恶意软件。这一研究对于打击相关的恶意软件网络犯罪至关重要。