Cell detection in pathological images presents unique challenges due to densely packed objects, subtle inter-class differences, and severe background clutter. In this paper, we propose CellMamba, a lightweight and accurate one-stage detector tailored for fine-grained biomedical instance detection. Built upon a VSSD backbone, CellMamba integrates CellMamba Blocks, which couple either NC-Mamba or Multi-Head Self-Attention (MSA) with a novel Triple-Mapping Adaptive Coupling (TMAC) module. TMAC enhances spatial discriminability by splitting channels into two parallel branches, equipped with dual idiosyncratic and one consensus attention map, adaptively fused to preserve local sensitivity and global consistency. Furthermore, we design an Adaptive Mamba Head that fuses multi-scale features via learnable weights for robust detection under varying object sizes. Extensive experiments on two public datasets-CoNSeP and CytoDArk0-demonstrate that CellMamba outperforms both CNN-based, Transformer-based, and Mamba-based baselines in accuracy, while significantly reducing model size and inference latency. Our results validate CellMamba as an efficient and effective solution for high-resolution cell detection.
翻译:病理图像中的细胞检测面临独特挑战,包括密集排列的物体、细微的类间差异以及严重的背景干扰。本文提出CellMamba,一种专为细粒度生物医学实例检测设计的轻量级高精度单阶段检测器。该模型基于VSSD主干网络构建,集成了CellMamba模块——该模块将NC-Mamba或多头自注意力机制与新型三重映射自适应耦合模块相结合。TMAC模块通过将通道拆分为两个并行分支来增强空间判别能力,每个分支配备双重特异性注意力图和一个共识注意力图,并通过自适应融合保持局部敏感性与全局一致性。此外,我们设计了自适应Mamba检测头,通过可学习权重融合多尺度特征,以适应不同尺寸目标的鲁棒检测。在CoNSeP和CytoDArk0两个公开数据集上的大量实验表明,CellMamba在准确率上优于基于CNN、Transformer和Mamba的基线模型,同时显著降低了模型规模与推理延迟。实验结果验证了CellMamba作为高分辨率细胞检测任务的高效解决方案的有效性。