Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
翻译:虽然培训和评估GAN越来越重要,但目前的GAN研究生态系统并没有提供连贯和公平进行评价的可靠基准;此外,由于全球AN执行机制的验证很少,研究人员花大量时间复制基线;我们研究GAN方法的分类,并提出一个新的开放源库,名为DududioGAN。 StudioGAN支持7个GAN架构、9个调整方法、4个对抗性损失、13个正规化模块、3个不同的增强、7个评价指标和5个评估骨干。我们利用培训和评估协议,提出了大规模基准,使用各种数据集(CI FAR10、图像网、AFHQv2、FFHQ、Baby/Papa/Granpa-ImagiNet)和3个不同的评价骨干(InceptionV3、SwaVAV、Swin Terverger)。不同于GAN社区使用的其他基准,我们培训了GANs的代表,包括BGAN、SysteleGAN2、SylalGAN3 和SyalGAN3 。我们用一个可量化的模型、BG-CREGANANS-DAR-ADAR-ADAR-ADAR-ADER-ADERS、7GS、ADIS-ADERADAR3、S、ADIS-ADIS-ADRADARADARADS、S、S、ADS、S、S、ADAR-ADAR-ADIS-ADIS-ADIS-ADIS-ADIS-ADIS-ADAR-ADIS-ADIS-ADIS-ADIS-ADIS-ADAR3、ADIS-ADIS-ADIS-ADIS-A、ADIS-ADIS-ADS、AS-A、S、7G-AD-ADAR_ADAR_ADAR_ADADA、ADADADADADADA、ADADS、7G-S、ADADS、7GS、7GS、7GS、BS、7GS、7GS、7GS、7GS、