With the rapid evolution of large language models (LLMs), the demand for automated, high-performance system kernels has emerged as a key enabler for accelerating development and deployment. We introduce TritonRL, a domain-specialized LLM for Triton kernel generation, trained with a novel training framework that enables robust and automated kernel synthesis. Unlike general-purpose programming languages, Triton kernel generation faces unique challenges due to data scarcity and incomplete evaluation criteria, vulnerable to reward hacking. Our approach addresses these challenges end-to-end by distilling Triton-specific knowledge through supervised fine-tuning on curated datasets, and further improving code quality via reinforcement learning (RL) with robust, verifiable rewards and hierarchical reward assignment. Our RL framework robustly detects reward hacking and guides both reasoning traces and code tokens through fine-grained verification and hierarchical reward decomposition, enabling the model to generate high-quality Triton kernels that can truly replace existing modules. With robust and fine-grained evaluation, our experiments on KernelBench demonstrate that TritonRL achieves state-of-the-art correctness and speedup, surpassing all other Triton-specific models and underscoring the effectiveness of our RL-based training paradigm.
翻译:暂无翻译