In this paper, we design lightweight graph convolutional networks (GCNs) using a particular class of regularizers, dubbed as phase-field models (PFMs). PFMs exhibit a bi-phase behavior using a particular ultra-local term that allows training both the topology and the weight parameters of GCNs as a part of a single "end-to-end" optimization problem. Our proposed solution also relies on a reparametrization that pushes the mask of the topology towards binary values leading to effective topology selection and high generalization while implementing any targeted pruning rate. Both masks and weights share the same set of latent variables and this further enhances the generalization power of the resulting lightweight GCNs. Extensive experiments conducted on the challenging task of skeleton-based recognition show the outperformance of PFMs against other staple regularizers as well as related lightweight design methods.
翻译:在本文中,我们设计了轻量图形革命网络(GCNs ), 使用一种特殊类别的正规化者,称为阶段模型(PFMs ) 。 PFMs 展示了一种两阶段行为,使用一个特定的超本地术语,既可以培训GCN的地形学,也可以将重量参数作为单一“端到端”优化问题的一部分。我们提议的解决方案还依赖于一种重新校正,将表面学面具推向二进二进二进制值,导致有效的表层选择和高度概括化,同时实施任何目标的速率。面具和重量都具有相同的潜伏变量,这进一步加强了由此产生的轻质GCNs的普及性能。在基于骨骼的识别这一具有挑战性的任务上进行的广泛实验表明PFMs对其他主控器的超效性能以及相关的轻量设计方法。