Autonomous systems with machine learning-based perception can exhibit unpredictable behaviors that are difficult to quantify, let alone verify. Such behaviors are convenient to capture in probabilistic models, but probabilistic model checking of such models is difficult to scale -- largely due to the non-determinism added to models as a prerequisite for provable conservatism. Statistical model checking (SMC) has been proposed to address the scalability issue. However it requires large amounts of data to account for the aforementioned non-determinism, which in turn limits its scalability. This work introduces a general technique for reduction of non-determinism based on assumptions of "monotonic safety'", which define a partial order between system states in terms of their probabilities of being safe. We exploit these assumptions to remove non-determinism from controller/plant models to drastically speed up probabilistic model checking and statistical model checking while providing provably conservative estimates as long as the safety is indeed monotonic. Our experiments demonstrate model-checking speed-ups of an order of magnitude while maintaining acceptable accuracy and require much less data for accurate estimates when running SMC -- even when monotonic safety does not perfectly hold and provable conservatism is not achieved.


翻译:以机器学习为基础的自动系统可能会出现难以量化的不可预测行为,更不用说核实了。这种行为很容易在概率模型中捕捉到,但这种模型的概率模型检查很难规模化 -- -- 主要是因为模型中增加了非确定性,作为可变保守主义的先决条件。提议进行统计模型检查(SMC)是为了解决可缩放性问题。然而,它需要大量的数据来说明上述非确定性,而这反过来又限制了其可缩放性。这项工作引入了一种基于“分子安全”假设的减少非确定性的一般技术,该技术界定了系统各州之间在安全概率方面的部分顺序。我们利用这些假设来消除控制/工厂模型中的非确定性,以大大加快概率模型检查和统计模型检查的速度,同时提供可靠保守性的估计数,因为安全性的确是单调的。我们的实验表明,在进行精确性估算时,对数量级的加速度进行模型检查,同时保持可接受性准确性的准确性,要求系统国家之间的不那么精确性数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年8月2日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
已删除
将门创投
5+阅读 · 2019年3月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
ICLR 2018最佳论文AMSGrad能够取代Adam吗
论智
6+阅读 · 2018年4月20日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
已删除
将门创投
5+阅读 · 2019年3月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
ICLR 2018最佳论文AMSGrad能够取代Adam吗
论智
6+阅读 · 2018年4月20日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员