In this study, we propose a digital over-the-air computation (OAC) scheme for achieving continuous-valued (analog) aggregation for federated edge learning (FEEL). We show that the average of a set of real-valued parameters can be calculated approximately by using the average of the corresponding numerals, where the numerals are obtained based on a balanced number system. By exploiting this key property, the proposed scheme encodes the local stochastic gradients into a set of numerals. Next, it determines the positions of the activated orthogonal frequency division multiplexing (OFDM) subcarriers by using the values of the numerals. To eliminate the need for precise sample-level time synchronization, channel estimation overhead, and channel inversion, the proposed scheme also uses a non-coherent receiver at the edge server (ES) and does not utilize a pre-equalization at the edge devices (EDs). We theoretically analyze the MSE performance of the proposed scheme and the convergence rate for a non-convex loss function. To improve the test accuracy of FEEL with the proposed scheme, we introduce the concept of adaptive absolute maximum (AAM). Our numerical results show that when the proposed scheme is used with AAM for FEEL, the test accuracy can reach up to 98% for heterogeneous data distribution.
翻译:在此研究中,我们提出一个数字超空计算(OAC)计划,用于为联合边缘学习(FEEL)实现连续估值(模拟)聚合。我们显示,一套实际价值参数的平均值可以通过使用相应的数字平均数来进行计算,而数字是根据平衡数字系统获得的。通过利用这一关键属性,拟议方案将本地随机梯度梯度编码成一组数字。接下来,它通过使用数字值来决定激活或超位频率分多重转换(OFDM)子载体的位置。为了消除精确抽样时间同步、频道估计间接费用和通道反转等需求,拟议方案还在边缘服务器(ES)使用非相容接收器,而没有在边缘设备(EDs)使用预均分法。我们从理论上分析了拟议方案 MSE 的性能以及非convex损失功能的趋同率。为了提高精确度测试感知度,我们用A类绝对值来显示A的精确度,我们用A级程测试了A的精确度,我们采用了A级测算结果。