Prototyping and validating hardware-software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt towards developing such a comprehensive research and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploying cyber-physical solutions pertaining to autonomous driving as well as smart city management. AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety of development frameworks, and supports both single and multi-agent paradigms through local as well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable to explore emergent technologies, and this work highlights various complementary features and capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) autonomous parking using probabilistic robotics approach for mapping, localization, path planning and control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart city management using vehicle-to-infrastructure communication and internet-of-things.
翻译:这项工作展示了与自主驾驶和智能城市管理有关的协同原型、模拟和部署网络物理解决方案; 自动开发功能既包括软件,也包括具有可公开获取的扩展型车辆和基础设施组件的在轨硬件测试界面; 生态系统与各种发展框架兼容,通过本地和分布式计算支持单一和多试剂模式; 最重要的是,自动开发旨在以模块形式扩展以探索新兴技术的综合性研究和教育生态系统,这项工作突出了拟议生态系统的各种互补特征和能力,展示了四个这种部署使用案例:(一) 自动停放,使用具有概率性的机器人方法进行绘图、本地化、路径规划和控制;(二) 行为克隆,使用计算机视觉和深层仿造学习;(三) 使用车辆到车辆之间的交叉跨轨,使用车辆到车辆之间的通信和智能式互联网管理; (三) 使用车辆到车辆之间的通信和深层互联网的学习和深层强化; (三) 使用车辆到车辆之间的通信和智能互联网管理; (四) 使用车辆到车辆之间的通信和深层强化; (四) 使用汽车到车辆之间的通信和深层互联网的学习和深层强化。