Passive optical networks (PONs) have become a promising broadband access network solution. To ensure a reliable transmission, and to meet service level agreements, PON systems have to be monitored constantly in order to quickly identify and localize networks faults. Typically, a service disruption in a PON system is mainly due to fiber cuts and optical network unit (ONU) transmitter/receiver failures. When the ONUs are located at different distances from the optical line terminal (OLT), the faulty ONU or branch can be identified by analyzing the recorded optical time domain reflectometry (OTDR) traces. However, faulty branch isolation becomes very challenging when the reflections originating from two or more branches with similar length overlap, which makes it very hard to discriminate the faulty branches given the global backscattered signal. Recently, machine learning (ML) based approaches have shown great potential for managing optical faults in PON systems. Such techniques perform well when trained and tested with data derived from the same PON system. But their performance may severely degrade, if the PON system (adopted for the generation of the training data) has changed, e.g. by adding more branches or varying the length difference between two neighboring branches. etc. A re-training of the ML models has to be conducted for each network change, which can be time consuming. In this paper, to overcome the aforementioned issues, we propose a generic ML approach trained independently of the network architecture for identifying the faulty branch in PON systems given OTDR signals for the cases of branches with close lengths. Such an approach can be applied to an arbitrary PON system without requiring to be re-trained for each change of the network. The proposed approach is validated using experimental data derived from PON system.


翻译:摘要: 被动式光纤网络(PONs)已成为一种有前途的宽带接入网络解决方案。为了确保可靠传输并满足服务级别协议,PON系统必须不断监测,以便快速识别和定位网络故障。通常,PON系统中的服务中断主要由光纤切割和光网络单元(ONU)的发射机/接收机故障引起。当ONUs位于距离光线终端(OLT)不同的距离时,通过分析记录的光时域反射图(OTDR)轨迹,可以识别或定位故障的ONU或分支。然而,当两个或更多长度相似的分支产生的反射重叠时,故障分支的隔离变得非常具有挑战性,这使得很难在全局反射信号下区分故障分支。最近,基于机器学习(ML)的方法在管理PON系统中的光纤故障方面显示出很强的潜力,这种技术在使用来自同一PON系统的数据进行训练和测试时表现良好。但是,如果PON系统(用于生成训练数据)发生了变化,例如添加更多分支或改变相邻两个分支之间的长度差异,它的性能可能会严重降低。对每个网络变化进行一次ML模型的重新训练可能需要耗费大量时间。为了克服上述问题,在本文中,我们提出了一种基于通用机器学习的方法,该方法独立于网络架构进行培训,用于在OTDR信号下识别PON系统中接近长度的故障分支。这种方法可应用于任意PON系统,无需为每个网络变化进行重新训练。所提出的方法使用从PON系统导出的实验数据进行验证。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
22+阅读 · 2022年3月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员