With the advent of media streaming, video action recognition has become progressively important for various applications, yet at the high expense of requiring large-scale data labelling. To overcome the problem of expensive data labelling, domain adaptation techniques have been proposed that transfers knowledge from fully labelled data (i.e., source domain) to unlabelled data (i.e., target domain). The majority of video domain adaptation algorithms are proposed for closed-set scenarios in which all the classes are shared among the domains. In this work, we propose an open-set video domain adaptation approach to mitigate the domain discrepancy between the source and target data, allowing the target data to contain additional classes that do not belong to the source domain. Different from previous works, which only focus on improving accuracy for shared classes, we aim to jointly enhance the alignment of shared classes and recognition of unknown samples. Towards this goal, class-conditional extreme value theory is applied to enhance the unknown recognition. Specifically, the entropy values of target samples are modelled as generalised extreme value distributions, which allows separating unknown samples lying in the tail of the distribution. To alleviate the negative transfer issue, weights computed by the distance from the sample entropy to the threshold are leveraged in adversarial learning in the sense that confident source and target samples are aligned, and unconfident samples are pushed away. The proposed method has been thoroughly evaluated on both small-scale and large-scale cross-domain video datasets and achieved the state-of-the-art performance.


翻译:随着媒体流流的出现,视频行动识别对于各种应用已逐渐变得重要,但要求大规模数据标签的成本却很高,但以高成本要求大规模数据标签为代价。为了克服昂贵的数据标签问题,提出了将知识从全标签数据(即源域)转移到无标签数据(即目标域)的域适应技术。随着媒体流的出现,大多数视频域适应算法是针对封闭式假设而提出的,其中所有类别都在域间共享。在这项工作中,我们提议采用开放式视频域适应办法,以缩小源和目标数据之间的域差,使目标数据包含不属于源域的更多类别。与以往的工作不同,前者只侧重于提高共享类的准确性,我们的目标是联合加强共享类和未知样本(即目标域域)的一致性。为了实现这一目标,应用了多数类有条件的极端价值逻辑来强化未知的认知。具体地说,目标样品的酶值模拟为一般化的极端值分布,从而可以分离分布尾部的未知样品。为了减轻负面的转移问题,在甚小的距离标点上计算加权的重量,在最大标尺标尺上,在最大标定的标定的标定的标值上,在最接近的标定的标尺上,在较深的标定的标定的标定的标定的标定的底的标定的标定的标定的标定的标定的标定的标定的标定的标定的标值中,在较深点的标值是进行。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员