Not-at-random missingness presents a challenge in addressing missing data in many health research applications. In this paper, we propose a new approach to account for not-at-random missingness after multiple imputation through weighted analysis of stacked multiple imputations. The weights are easily calculated as a function of the imputed data and assumptions about the not-at-random missingness. We demonstrate through simulation that the proposed method has excellent performance when the missingness model is correctly specified. In practice, the missingness mechanism will not be known. We show how we can use our approach in a sensitivity analysis framework to evaluate the robustness of model inference to different assumptions about the missingness mechanism, and we provide R package StackImpute to facilitate implementation as part of routine sensitivity analyses. We apply the proposed method to account for not-at-random missingness in human papillomavirus test results in a study of survival for patients diagnosed with oropharyngeal cancer.
翻译:在许多健康研究应用中,非随机失踪对处理缺失数据提出了挑战。在本文件中,我们提出一种新的方法,通过对堆叠的多重估算进行加权分析,对多重估算后的非随机失踪进行核算。权重很容易作为估算数据和非随机失踪假设的函数计算。我们通过模拟表明,在正确指定失踪模式时,拟议方法的性能极佳。在实践中,失踪机制将不为人所知。我们展示了如何在敏感分析框架中使用我们的方法,评估模型对失踪机制不同假设的可靠推断,我们提供了R包StaackImpte,以便利执行常规敏感性分析的一部分。我们采用拟议方法,在对诊断患有奥氏性肿瘤的病人进行生存研究时,对人类巴皮洛马病毒试验中的非随机失踪进行核算。