Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and 120~330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.


翻译:神经元在其神经元功能所必不可少的神经元分支网络中表现出复杂的几何特征,但也给在整个中子网络中运输各种基本材料以生存和功能带来挑战。虽然通过解决部分差异方程(PDEs),已经使用等离子分析等数字方法来模拟材料运输过程,但需要很长的计算时间和巨大的计算资源来确保精确的几何表达和解决方案,从而限制其生物医学应用。我们在这里提出了一个基于图形神经网络的深层次学习模型,以学习以IGA为基础的材料运输模拟,并在任何地形的中子网络中提供快速材料浓度预测。鉴于输入边界条件和几何结构,经过良好训练的模型可以预测运输过程中的动态浓度变化,平均误差小于10%,比IGA模拟快120~330倍。拟议模型的有效性在若干复杂的中子网络中展示。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年3月10日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
38+阅读 · 2020年3月10日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
15+阅读 · 2018年4月3日
Top
微信扫码咨询专知VIP会员