We introduce a new type of estimator for the spectral tail process of a regularly varying time series. The approach is based on a characterizing invariance property of the spectral tail process, which is incorporated into the new estimator via a projection technique. We show uniform asymptotic normality of this estimator, both in the case of known and of unknown index of regular variation. In a simulation study the new procedure shows a more stable performance than previously proposed estimators.
翻译:我们为定期变化的时间序列的光谱尾部过程引入了新型的测算器。 这种方法基于光谱尾部过程的变量属性特征, 该特性通过投影技术被纳入新的测算器中。 在已知和未知的常变指数中,我们都显示了这个测算器的统一无症状常态。 在模拟研究中, 新程序显示的性能比先前提议的测算器更稳定。