In this report, we present PP-YOLOE, an industrial state-of-the-art object detector with high performance and friendly deployment. We optimize on the basis of the previous PP-YOLOv2, using anchor-free paradigm, more powerful backbone and neck equipped with CSPRepResStage, ET-head and dynamic label assignment algorithm TAL. We provide s/m/l/x models for different practice scenarios. As a result, PP-YOLOE-l achieves 51.4 mAP on COCO test-dev and 78.1 FPS on Tesla V100, yielding a remarkable improvement of (+1.9 AP, +13.35% speed up) and (+1.3 AP, +24.96% speed up), compared to the previous state-of-the-art industrial models PP-YOLOv2 and YOLOX respectively. Further, PP-YOLOE inference speed achieves 149.2 FPS with TensorRT and FP16-precision. We also conduct extensive experiments to verify the effectiveness of our designs. Source code and pre-trained models are available at https://github.com/PaddlePaddle/PaddleDetection.
翻译:在本报告中,我们展示了PP-YOLOE, 这是一种高性能和友好部署的工业级先进物体探测器;我们利用以前的PP-YOLOOV2, 利用无锚模式、更强大的骨架和颈部,配备了CSPRepResStage、ET-head和动态标签分配算法TAL,优化了PP-YOLOE;我们为不同实践情景提供了S/m/l/x模型;因此,PP-YOLOE-1在CO测试-dev和78.1FPS上实现了51.2MAPCO测试-dev和Tesla V100上78.1FPS,取得了显著的改进(+1.9 AP,+13.35%速度)和(+1.3 AP,+24.96%的加速速度),与以往的先进工业模型PPPP-YOLOv2和YOLOX相比,我们分别提供了S/X。此外, PP-YOLOE推测速度达到149.2FPS, 在TensorRT和PF16-prision上,我们还进行了广泛的实验性实验,以核实我们的设计的有效性。