Large-scale crop yield estimation is, in part, made possible due to the availability of remote sensing data allowing for the continuous monitoring of crops throughout their growth cycle. Having this information allows stakeholders the ability to make real-time decisions to maximize yield potential. Although various models exist that predict yield from remote sensing data, there currently does not exist an approach that can estimate yield for multiple crops simultaneously, and thus leads to more accurate predictions. A model that predicts the yield of multiple crops and concurrently considers the interaction between multiple crop yields. We propose a new convolutional neural network model called YieldNet which utilizes a novel deep learning framework that uses transfer learning between corn and soybean yield predictions by sharing the weights of the backbone feature extractor. Additionally, to consider the multi-target response variable, we propose a new loss function. We conduct our experiment using data from 1,132 counties for corn and 1,076 counties for soybean across the United States. Numerical results demonstrate that our proposed method accurately predicts corn and soybean yield from one to four months before the harvest with a MAE being 8.74% and 8.70% of the average yield, respectively, and is competitive to other state-of-the-art approaches.


翻译:之所以能够进行大规模作物产量估计,部分是因为可以获得遥感数据,以便能够在整个作物生长周期对作物进行持续监测。有了这种信息,利益有关者就有能力作出实时决定,以最大限度地发挥产量潜力。虽然存在着各种模型,预测遥感数据产生的产量,但目前还没有一种方法可以同时估计多种作物的产量,从而得出更准确的预测。一种模型预测多种作物的产量,同时考虑多种作物产量之间的相互作用。我们提议了一个称为YieeldNet的新的革命性神经网络模型,它利用一个新的深层次学习框架,通过分享主干线提取物的重量,在玉米和大豆产量预测之间转移学习。此外,为了考虑多目标响应变量,我们提出一个新的损失功能。我们使用来自美国1,132个玉米郡和1,076个大豆郡的数据进行实验。一个数值结果显示,我们提出的方法准确预测玉米和大豆产量在收获前一至四个月的玉米和大豆产量的1至4个月之间,利用新的深层次学习框架,通过分享主干特征提取物的重量来转移玉米和大豆类产量的预测。此外,我们提出新的损失功能功能。我们利用1,利用1,利用1,我们利用1,从玉米和8.74和8.70%的平均产量的其他方法分别具有竞争力。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年7月27日
Multi-Label Learning with Label Enhancement
Arxiv
4+阅读 · 2019年4月16日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员