This paper provides a brief overview of our submission to the no interaction track of SAPIEN ManiSkill Challenge 2021. Our approach follows an end-to-end pipeline which mainly consists of two steps: we first extract the point cloud features of multiple objects; then we adopt these features to predict the action score of the robot simulators through a deep and wide transformer-based network. More specially, %to give guidance for future work, to open up avenues for exploitation of learning manipulation skill, we present an empirical study that includes a bag of tricks and abortive attempts. Finally, our method achieves a promising ranking on the leaderboard. All code of our solution is available at https://github.com/liu666666/bigfish\_codes.
翻译:本文件简要概述了我们提交SAPIEN ManiSkill Challenge 2021年挑战的不互动轨道的文件。我们的方法是一条端到端管道,主要包括两个步骤:我们首先提取多个物体的点云特征;然后我们采用这些特征,通过一个深宽的变压器网络预测机器人模拟器的行动分数。更具体地说,为今后的工作提供指导,以打开利用学习操纵技能的渠道,我们介绍了一项经验性研究,其中包括一包诡计和中止尝试。最后,我们的方法在领先板上取得了很有希望的排名。我们解决方案的所有代码都可在https://github.com/liu6666666666/bighish ⁇ codes上查阅。