We present High Dynamic Range Neural Radiance Fields (HDR-NeRF) to recover an HDR radiance field from a set of low dynamic range (LDR) views with different exposures. Using the HDR-NeRF, we are able to generate both novel HDR views and novel LDR views under different exposures. The key to our method is to model the physical imaging process, which dictates that the radiance of a scene point transforms to a pixel value in the LDR image with two implicit functions: a radiance field and a tone mapper. The radiance field encodes the scene radiance (values vary from 0 to +infty), which outputs the density and radiance of a ray by giving corresponding ray origin and ray direction. The tone mapper models the mapping process that a ray hitting on the camera sensor becomes a pixel value. The color of the ray is predicted by feeding the radiance and the corresponding exposure time into the tone mapper. We use the classic volume rendering technique to project the output radiance, colors, and densities into HDR and LDR images, while only the input LDR images are used as the supervision. We collect a new forward-facing HDR dataset to evaluate the proposed method. Experimental results on synthetic and real-world scenes validate that our method can not only accurately control the exposures of synthesized views but also render views with a high dynamic range.


翻译:我们展示了高动态距离神经干燥场(HDR- NERF), 以从一组低动态范围(LDR)观点和不同曝光范围(LDR) 中恢复一个《人类发展报告》亮度场。 使用《人类发展报告》光谱(NERF) 》, 我们能够在不同的曝光下生成新版《人类发展报告》观点和新版《LDR》观点。 我们的方法的关键在于模拟物理成像过程, 要求场点的亮度转化为LDR图像中的像素值, 有两个隐含功能: 光度场和音调映射仪。 光谱场将场的亮度编码为场景亮度( 值从 0 到 + 英法 ), 以相应的射线源和射线方向输出射线的密度和亮度。 调色谱模型显示对摄像传感器的射线的映射过程变成像值。 光线的颜色通过将光光亮度和相应的接触时间只输入到调映射图中。 我们使用典型的接触量技术来对图像和LDRDR 的图像进行精确的图像的图像进行评估, 。 将我们使用的图像用于向前期的图像的图像的图像的输入方法, 。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
专知会员服务
72+阅读 · 2021年5月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
6+阅读 · 2021年4月13日
Arxiv
4+阅读 · 2020年10月18日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关论文
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
6+阅读 · 2021年4月13日
Arxiv
4+阅读 · 2020年10月18日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年11月30日
Top
微信扫码咨询专知VIP会员