We revisit the problem of building static hash tables on the GPU and design and build three bucketed hash tables that use different probing schemes. Our implementations are lock-free and offer efficient memory access patterns; thus, only the probing scheme is the factor affecting the performance of the hash table's different operations. Our results show that a bucketed cuckoo hash table that uses three hash functions (BCHT) outperforms alternative methods that use power-of-two choices, iceberg hashing, and a cuckoo hash table that uses a bucket size one. At high load factors as high as 0.99, BCHT enjoys an average probe count of 1.43 during insertion. Using three hash functions only, positive and negative queries require at most 1.39 and 2.8 average probes per key, respectively.


翻译:我们重新审视了在 GPU 上建立静态散列表格的问题,设计并建造了使用不同探测方法的3个桶装散列表格。我们的实施是无锁的,提供了高效的内存访问模式;因此,只有探测计划是影响散列表格不同操作绩效的因素。我们的结果表明,使用三种散列函数(BCHT)的桶装库式散列表格优于使用两种选择权的替代方法,即冰山散列,以及使用1号桶尺寸的桶装散列表格。在高达0.99, BCHT 的高载系数下,在插入过程中平均检测计数为1.43个。仅使用3个散列函数,正面和负式查询需要最多1.39个和2.8个按键平均探测器。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
专知会员服务
61+阅读 · 2020年3月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月12日
Data-Efficient Instance Segmentation with a Single GPU
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Arxiv
6+阅读 · 2020年3月16日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员